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20-3&1,01000 Mexico DF. Mexioo 
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Abstract. A method to evaluate penurbations of arbitrary spectra by one of the classical 
ensembles was presented in a previous paper. Its application to non-trivial problems is 
cumbersome and I shall show that by combining the previous results with singular perturbation 
theay, more wmplicated problems can be tackled. A scaling argunent is also presented to obtain 
a general result thaf goes beyond the linear repulsion regime that we discussed previously. This 
result is of considerable interest as it allows us to obtain a good idea of the correlation function 
if we, in addition. know its long-range behaviour, which can be obtained by straightfaward 
pewbation theory. 

1. Introduction 

In our previous work [l], hereafter referred to as r, we derived a general relation valid 
for the two-point function of an arbitrary ensemble (subject only to a certain invariance 
condition) perturbed by one of the three classical ensembles [Z, 31 (GO€, GUE or GSE). This 
relation is exact but involves the three-point function of the perturbed ensemble, which is 
unknown in general. It was argued, however, that for weak perturbations it was reasonable 
to approximate this latter term by the unperturbed three-point function. Once one attempts 
to apply the results of I to a specific problem [4] that goes beyond the simple example 
treated in I, they turned out to be extremely difficult to work with. This is the case because 
the perturbation approximations were not exploited fully. In this paper I shall first present 
a scaling argument for the short-range part of the two-body function that goes considerably 
beyond the short-range repulsion of levels discussed in 1. I shall then proceed to show that 
the use of singular perturbation theory [5] will give expressions that are easier to handle, 
and that are actually applied in [43. Indeed the result of this argument allows us to have 
a fair idea of the overall two-point function of eigenvalues if we know, in addition, the 
long-range behaviour of this function, which can be obtained from ordinary perturbation 
theory. 

~ 

~ ~ 

2. Scaling properties of the short-range part of the two-point function 

In I we derived a general relation valid for the two-point function of an arbitrary ensemble 
(subject only to a certain invariance condition) perturbed by one of the three classical 
ensembles [2,3] (GoE. GUE or GSE). This relation is exact but involves the threepoint 
function of the perturbed ensemble, which is unknown in general. It was argued, however, 
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that for weak perturbations it was reasonable to approximate this latter term by the 
unperturbed three-point function. This then led to an equation of the form 

a&(X;A) a2Pz a p2 
an ax2 ax x 

= c- - 2- (-) + F ( x )  

where C is a constant depending on the perturbing ensemble, F ( x )  is a complicated 
integral involving the unperturbed three-point function and h measures the strength of the 
perturbation. The initial condition is, therefore, the unperturbed two-point function. As 
it stands, this equation is extremely difficult to work with, due to the presence both of 
intractable functions as well as singular integrals. For this reason, we were not able to 
exploit the solution in quadratures presented in I to solve the problem of N GOES mixed by 
a weak GOE. Using the methods developed in this paper, on the other hand, the problem 
admits a solution. 

In this paper, I wish to keep the discussion entirely general. The solution to the specific 
problem that motivated this work is presented in 141. For this reason, I shall concentrate in 
the following on the equation: 

4 ( x :  0) = a(4 

for small values of A. In this equation @ denotes an arbitrary function and F ( x )  is a 
completely general inhomogeneity. The initial condition u(x) will also be taken to be 
entirely general. Both, however, will be assumed in the main body of the text to be 
sufficiently smooth near the origin. This assumption is fullilled in a large number of 
practical cases. The possibility that F ( x )  has a logarithmic singularity at zero (which 
occurs in problems involving the perturbation of N GOES) is treated in an appendix. 

The first and most obvious remark is that the problem has a somewhat singular nature 
close to x = 0. This is seen by noting that the general solution can be found using 
an eigenfunction expansion, as indicated in 1. From this it follows immediately that the 
soIution must vanish as xz /c  as x + 0. Since this is not, in general, true for the initial 
data u(x), the change in the appearance of @(x;  A) will be particularly strong in the vicinity 
of x = 0. In the following, I will apply standard singular perturbation techniques to this 
problem, as described, for example, in 151. One therefore introduces the rescaled variable 
t equal to x / a .  Equation (2.2) then becomes 

Thus, for small A, the terms in l / h  must first be set equal to zero. This implies that in a 
first approximation 
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Note that the initial conditions are determined by the following: the condition at $ = 0 is 
the only one that is compatible with the known small-x properties of the solution described 
in I. As to the condition for [ + 00, it is determined by the fact that @(x; A) should not 
d&er much from u ( x )  for x + 0. 

Equation (2.4) is readily solved to yield 

where Mk,m(~) denotes the confluent hypergeometric function in the notation of Whittaker 
and Watson [6]. These functions have already been found in I for the two-point function 
of a Poisson ensemble perturbed by a weak GOE (though they were given in integral form 
and not properly identified as confluent hypergeometric functions). It is now clear that their 
significance is far deeper: they represent the behaviour close to x = 0 of any solution of 
equation (2.2) for small A. Thus the two-point function of any ensemble weakly perturbed 
by a GOE is determined at small x by the probability u(0) of finding two nearby eigenvalues 
in the unperturbed ensemble. Furthermore, the way in which the two-point fnnction rises 
from zero to u(0) is a universal function of x/& of the form given in equation (2.5). Note 
that the asymptotic behaviour of the confluent hypergeometric function is well known (see, 
for example, [6]) and leads to the following large-[ behaviour for @&) 

@&) M 4 M f  25-3. (2.6) 

In this section, a universal small-x behaviour of the two-point function in terms of the 
scaling variable [ has been found. In the next section we shall try to connect this solution 
to the long-range behaviour expressed in terms of ordinary perturbation theory. Since the 
former is universal, whereas the latter depends on the details of the perturbation, it is clear 
that the two solutions will not automatically match. The computation of higher terms in A 
will be shown to allow matching of both solutions. 

3. Matching the long- and short-range solutions 

The next problem is to determine the solution of equation (2.2) in the case of x >> a. 
In this case, ordinary perturbation theory is sufficient. I assume that @(x; A) will be only 
slightly different from its initial value u(x). Thus, introducing p(x; A) = @(x; A) - u ( x ) ,  
one finds 

p(x; 0) = 0 (3.1) 

If p(x; A) goes to zero as h + 0, then for smdl A, the right-hand side of equation (3.1) is 
dominated by G(n),  from which it follows in a first approximation that 

$ ( x ;  = t AG(x) + O(A). (3.2) 
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In order to see whether this can indeed be made to fit with the smaU-x (or large-[) behaviour 
discussed above, one needs to compute higher-order terms to the latter. In the t variables, 
the following asymptotic form for #($; A) is expected: 

6( t ;  A) = 6oE) + &$i(t) f WG') + O@). (3.3) 

Intuitively, this can he seen as follows: if ~'(0) + 0, then one expects $'(e; A) m go as di 
for g + W. From this follows the need for a correction of order 6. As to the correction 
of order A, it is necessary in order to have any hope of matching the small- and largex 
solutions. 

Putting the definition of @I(.$) given by equation (3.3) in the equation (2.3) for $(e; A), 
I obtain 

(3.4) 

6;w + (t + 00). 

The first b o u n d q  condition is, again, imposed by the condition that 610) be regular at 
the origin, whereas the second follows from the above estimate of the derivative of  @(E; A). 
From this one immediately finds the solution 

as long as C < 2. If C = 2, which~happens in the GOE case, the function u'(0)t is a 
solution satisfying all boundary conditions. 

In order to calculate the next order, I must make some assumptions about the behaviour 
of F(x)  near the origin. In the following, I will assume it remains bounded. I will later 
investigate the consequences of a logarithmic singularity. Both of these cases do indeed 
occur in practical applications, as set out in [4]. Putting the ansatz for $ ( x ;  A) given by 
equation (3.3) into equation (2.3), one finds 

C&+ p i  t - 62 - 2 ($y + F(0) = 0. (3.6) 

In order to fix the boundary conditions, note that 

One may therefore impose the boundary conditions 

&(x)  c( x2fC 

h(t)/E2 + 0"(0)/2 

(x  + 0) 

(5 4 00). 

The homogeneous equation corresponding to equation (3.6) has the solution 

(3.9) 
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Using standard formulae for the large-: behaviour of the confluent hypergeometric functions 
[6], one finds that this function goes as f 2  + constant. Further, it is seen by inspection that 

(3.10) 

is a particular solution of equation (3.6). Thus, the boundary conditions can readily be met 
by adding a suitable multiple of @I(:) to @&). Upon noting further that any solution of 
equation (3.6) that tends to a limit for large : must tend to the value F(O), the asymptotic 
behaviour of the solution is found to he 

= p’(0):’ + F(0) + (C’ -  l)u”(O). (3.11) 

Note that, athough the intermediate steps are illegitimate in the specific case C = 1, the 
final result does have a well-defined limit as C -+ 1. This will not be written out explicitly, 
as the case it corresponds to is not the most interesting. On the other hand, it should be 
pointed out that in this case the solutions simplify appreciably. This may, in part, account 
for the exact solubility of the case of N CUES perturbed by a G h ,  which has been solved 
exactly for arbitrary perturbation strength in [7]. 

Combining all the above results, one finds the following large$ behaviour for @ ( E ;  A): 

@(e; A) = u(0)(1+ 2/:*) + f iu’(0)t  + A(u”(O)/2):’ + W O )  + (A(C - l))u”(O) 

(3.12) 

where the first expression is derived kom the asymptotic expression for large for @&). 
Let us now look at the behaviour of @(x; A) in the regime f i  << x k 1. In this~case, one 
finds 

@ ( x :  A) M o(x) + AG(x) 

(0) 
X 2  

X Z  
Ft: U(O) +xu‘(O) + -u“(O) 2 + A  F(0) + Cu“(0) + 2- -u”(O)) (3.13) 

which corresponds term for term to the largec behaviour given in equation (3.12). Thus 
the two perturbation series coincide in the domain where both should be valid. 

As to the case in which F ( x )  has a logarithmic singularity at the origin, which takes 
place in the case of a GOE, the calculations become rather involved and are developed in 
the appendiu. Summarizing the results, one finds that the higher-order corrections have the 
form 

@(:;A) = @ ~ ( : ) + ~ @ l ( : ) + A I n h @ Z ( : ) + h & ( : ) .  (3.14) 

The consistency of this form with the small-x limit of the perturbative solution can indeed 
be shown but the functions @&) and &(e) cannot be computed explicitly. They can, 
however, be evaluated numerically. 
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4. Conclusions 

Summarizing, I have developed a general method to describe accurately the solution to 
equation (2.2) for A << 1 over the whole range of x. Since this equation was derived in 
order to describe the two-point function of random matrix ensembles perturbed by a classical 
ensemble of strength A when A << 1 one can indeed obtain the two-point function in this 
regime. The results are somewhat subtle, as they require singular perturbation theory to 
describe the abrupt change in the nature of the two-point function near the origin as the 
perturbation is turned on. 

The final results can be summarized by saying that there is a universal function which, 
at a suitable scale, describes the behaviour near the origin. This function accounts for the 
sudden decrease in the contact probability from its initial value to zero. Corrections of 
various orders were then computed, in order to asceaain whether the behaviour at the origin 
could indeed be matched smoothly to the behaviour at f i  (< x (< 1, in which case ordinary 
perturbation theory is applicable. This was indeed found to be the case. 

As a final remark, the following should be pointed out: in I we claimed that the perturbed 
two-point function always behaved as xzlc, even if the eigenvalue repulsion had originally 
been stronger. Further, it was conjectured that the strength of this effect would be very low. 
In particular, if a(x) is taken to vanish identically for sufficiently small x, it was suggested 
that the effect, although present, would he non-perturbative in A. These conjectures receive 
some support from the present work indeed, it was systematically found that the size of 
the various corrections depended on the various derivatives of o ( x )  at x = 0. From this can 
be deduced that the effect shown in I would not be observed, under those circumstances, at 
least to first order in A. It can probably readily be shown that no corrections will occur at 
any order in A. 
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Appendix 

In the case where the function F ( x )  has a logarithmic singularity at the origin, the ansatz 
for the 6(5; A.) is as follows 

I will assume that F(x)  goes as A lnx/xo for x + 0, with xo chosen in such a way that 
there is no constant correction term to this behaviour. For the functions @Z and 4 2  this 
leads to the following coupled equations: 
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The boundary conditions are again obtained by matching the largec and the small-x 
behaviour. This leads to 

M 6 )  + 0 + 03) 

and both @2(6) and &(e) go as 5''' as -+ 0. From this one obtains 

The calculation of &(.$), on the other hand, turns out to be impracticable. The following 
device can be used for its numerical evaluation, however: solve the equation for &(E) 
numerically using the exact form of ~ ~ ( 6 )  as input and the initial condition 

42(0) = 0 $&,CO) = 1. (-4.5) 

The asymptotic behaviour for + 00 can then be evaluated and adjusted to the expected 
behaviour by adding a suitable multiple of the solution of the homogeneous equation, which 
is given by 

where the prefactor has been chosen so as to yield an asymptotic behaviour of e2 as 6 + W. 
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